A note on Jensen type inequality for Choquet integrals
نویسنده
چکیده
The purpose of this paper is to prove a Jensen type inequality for Choquet integrals with respect to a non-additive measure which was introduced by Choquet [1] and Sugeno [20]; Φ((C) ∫ fdμ) ≤ (C) ∫ Φ(f)dμ, where f is Choquet integrable, Φ : [0,∞) −→ [0,∞) is convex, Φ(α) ≤ α for all α ∈ [0,∞) and μf (α) ≤ μΦ(f)(α) for all α ∈ [0,∞). Furthermore, we give some examples assuring both satisfaction and dissatisfaction of Jensen type inequality for the Choquet integral.
منابع مشابه
Generalization of the Lyapunov type inequality for pseudo-integrals
We prove two kinds of Lyapunov type inequalities for pseudo-integrals. One discusses pseudo-integrals where pseudo-operations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring 0; 1 ½ ; sup; ð Þ , where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities. As a generali...
متن کاملOn Stolarsky inequality for Sugeno and Choquet integrals
Keywords: Fuzzy measure Sugeno integral Choquet integral Stolarsky's inequality a b s t r a c t Recently Flores-Franulič, Román-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure k. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolar-sky inequality for Choquet integral is ...
متن کاملOn Generalizations of Hadamard Inequalities for Fractional Integrals
Fej'{e}r Hadamard inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r Hadamard inequalities for $k$-fractional integrals. We deduce Fej'{e}r Hadamard-type inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.
متن کاملStolarsky’s Inequality for Choquet-like Expectation
Expectation is the fundamental concept in statistics and probability. As two generalizations of expectation, Choquet and Choquet-like expectations are commonly used tools in generalized probability theory. This paper considers the Stolarsky inequality for two classes of Choquet-like integrals. The first class generalizes the Choquet expectation and the second class is an extension of the Sugeno...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Fuzzy Logic and Intelligent Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2009